Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int. j. morphol ; 41(3): 811-818, jun. 2023. ilus
Article in English | LILACS | ID: biblio-1514286

ABSTRACT

SUMMARY: The objective of this study was to investigate the mechanism of prenatal stress on the cognitive function of offspring, and clarify the change of histone deacetylase 2 (HDAC2) expression in hippocampal neurons of offspring. 16 pregnant SD rats were randomly divided into control group and stress group, with eight rats in each group. The stress group received restrained stress from 15 to 21 days of pregnancy, while the control group did not receive any treatment. Anxiety-like behavior and spatial memory, learning and memory ability were detected in open field, elevated plus maze, novel object recognition test, and Barnes maze. Nissl staining was used to detect the function of hippocampal neurons. Western blot was used to detect the expression of HDAC2 protein in hippocampal neurons of adult offspring. Immunofluorescence staining was used to detect the expression of HDAC2 protein and hippocampal neurogenesis. The learning and memory ability of adult offspring was decreased. The prenatal stress damaged the function of hippocampal neurons , the expression of HDAC2 was down-regulated, and the number of neurons was reduced. Maternal prenatal stress can down- regulate the expression of HDAC2 in the hippocampus of offspring, inhibits hippocampal neurogenesis and impairs the cognitive function.


El objetivo de este estudio fue investigar el mecanismo del estrés prenatal en la función cognitiva de la descendencia y aclarar el cambio de la expresión de la histona desacetilasa 2 (HDAC2) en las neuronas del hipocampo de la descendencia. 16 ratas SD preñadas se dividieron aleatoriamente en un grupo de control y un grupo de estrés, con ocho ratas en cada grupo. El grupo de estrés recibió estrés durante 15 a 21 días de pre, preñez, mientras que el grupo de control no recibió ningún tratamiento. El comportamiento similar a la ansiedad y la memoria espacial, el aprendizaje y la capacidad de memoria se detectaron en campo abierto, laberinto en cruz elevado, prueba de reconocimiento de objetos novedosos y laberinto de Barnes. La tinción de Nissl se utilizó para detectar la función de las neuronas del hipocampo. Se utilizó Western blot para detectar la expresión de la proteína HDAC2 en las neuronas del hipocampo de la descendencia adulta. La tinción de inmunofluorescencia se utilizó para detectar la expresión de la proteína HDAC2 y la neurogénesis del hipocampo. La capacidad de aprendizaje y memoria de la descendencia adulta se redujo. El estrés prenatal dañó la función de las neuronas del hipocampo, se reguló negativamente la expresión de HDAC2 y se redujo el número de neuronas. El estrés prenatal materno puede regular a la baja la expresión de HDAC2 en el hipocampo de la descendencia, inhibe la neurogénesis del hipocampo y deteriora la función cognitiva.


Subject(s)
Animals , Female , Pregnancy , Rats , Prenatal Exposure Delayed Effects , Stress, Psychological , Histone Deacetylase 2/metabolism , Cognitive Dysfunction , Immunohistochemistry , Blotting, Western , Rats, Sprague-Dawley , Neurogenesis , Epigenomics , Open Field Test , Elevated Plus Maze Test , Hippocampus , Learning , Memory
2.
Acta Physiologica Sinica ; (6): 527-534, 2021.
Article in Chinese | WPRIM | ID: wpr-887688

ABSTRACT

Oogenesis is the basic reproductive process of female mammals and is essential for fertilization and embryo development. Recent studies have shown that epigenetic modifications play an important role in the regulation of mammalian reproductive processes (such as oogenesis, spermatogenesis, preimplantation embryo development and sex differentiation). Taking histone acetylation as an instance, the dynamic changes of histone acetyltransferases (HATs) and deacetylases (HDACs) are involved in the regulation of gene activation and inactivation when numerous key physiological events occur during reproduction. Thereinto, HDAC1 and HDAC2, which are highly homologous in terms of both structure and function, play a pivotal role in murine oogenesis. HDAC1 and 2 jointly regulate the global transcription and the incidence of apoptosis of growing oocytes and affect its subsequent growth and development, which reflects their compensatory function. In addition, HDAC1 and 2 also play a specific part in oogenesis respectively. It has shown that HDAC2 is more critical than HDAC1 for oocyte development, which regulates de novo DNA methylation and chromosome segregation. Reciprocally, HDAC1 is more critical than HDAC2 for preimplantation development. Deficiency of HDAC1 causes the decreased proliferation of embryonic stem cells and the smaller embryoid bodies with irregular shape. In this review, we summarized the role and the current research progress of HDAC1/2 in murine oogenesis, to provide a reference for further understanding the relationship between epigenetic modifications and reproductive regulation.


Subject(s)
Animals , Female , Male , Mice , Acetylation , Embryonic Development , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Histone Deacetylases/metabolism , Oocytes , Oogenesis
3.
Chinese Journal of Contemporary Pediatrics ; (12): 294-299, 2021.
Article in Chinese | WPRIM | ID: wpr-879849

ABSTRACT

OBJECTIVE@#To study the role and mechanism of histone deacetylase 1 (HDAC1) and histone deacetylase 2 (HDAC2) in mouse neuronal development.@*METHODS@#The mice with Synapsin1-Cre recombinase were bred with @*RESULTS@#The mice with @*CONCLUSIONS@#Deletion of


Subject(s)
Animals , Mice , Blotting, Western , Histone Deacetylase 1/genetics , Histone Deacetylase 2 , Histone Deacetylases/genetics , Immunohistochemistry , Neurons/metabolism , Signal Transduction
4.
Chinese Medical Journal ; (24): 569-576, 2019.
Article in English | WPRIM | ID: wpr-774811

ABSTRACT

BACKGROUND@#Glucocorticoids have been widely used to treat patients with chronic obstructive pulmonary disease (COPD). Nevertheless, corticosteroid insensitivity is a major barrier to the effective treatment of COPD and its mechanism remains unclear. This study aimed to evaluate the effect of cathelicidin LL-37 on corticosteroid insensitivity in COPD rat model, and to explore the involved mechanisms.@*METHODS@#COPD model was established by exposing male Wistar rats to cigarette smoke combined with intratracheal instillation of lipopolysaccharide (LPS). Inhaled budesonide and LL-37 were consequently applied to COPD models separately or collectively to confirm the effects on inflammatory cytokines (tumor necrosis factor [TNF]-α and transforming growth factor [TGF]-β) by enzyme-linked immunosorbent assay (ELISA) and lung tissue histopathological morphology. Expression of histone deacetylase-2 (HDAC2) and phosphorylation of Akt (p-AKT) in lung were also measured.@*RESULTS@#Briefly, COPD model rats showed an increased basal release of inflammatory cytokines (lung TNF-α: 45.7 ± 6.1 vs. 20.1 ± 3.8 pg/mL, P < 0.01; serum TNF-α: 8.9 ± 1.2 vs. 6.7 ± 0.5 pg/mL, P = 0.01; lung TGF-β: 122.4 ± 20.8 vs. 81.9 ± 10.8 pg/mL, P < 0.01; serum TGF-β: 38.9 ± 8.5 vs. 20.6 ± 2.3 pg/mL, P < 0.01) and COPD related lung tissue histopathological changes, as well as corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase (PI3K)/Akt (0.5 ± 0.1 fold of control vs. 0.2 ± 0.1 fold of control, P = 0.04) and a decrease in HDAC2 expression and activity (expression: 13.1 ± 0.4 μmol/μg vs. 17.4 ± 1.1 μmol/μg, P < 0.01; activity: 1.1 ± 0.1 unit vs. 1.4 ± 0.1 unit, P < 0.01), compared with control group. In addition, LL-37 enhanced the anti-inflammatory effect of budesonide in an additive manner. Treatment with combination of inhaled corticosteroids (ICS) and LL-37 led to a significant increase of HDAC2 expression and activity (expression: 15.7 ± 0.4 μmol/μg vs. 14.1 ± 0.9 μmol/μg, P < 0.01; activity: 1.3 ± 0.1 unit vs. 1.0 ± 0.1 unit, P < 0.01), along with decrease of p-AKT compared to budesonide monotherapy (0.1 ± 0.0 fold of control vs. 0.3 ± 0.1 fold of control, P < 0.01).@*CONCLUSIONS@#This study suggested that LL-37 could improve the anti-inflammatory activity of budesonide in cigarette smoke and LPS-induced COPD rat model by enhancing the expression and activity of HDAC2. The mechanism of this function of LL-37 might involve the inhibition of PI3K/Akt pathway.


Subject(s)
Animals , Humans , Male , Rats , Antimicrobial Cationic Peptides , Pharmacology , Therapeutic Uses , Glucocorticoids , Metabolism , Histone Deacetylase 2 , Metabolism , Inflammation , Drug Therapy , Lipopolysaccharides , Pharmacology , Phosphatidylinositol 3-Kinases , Metabolism , Proto-Oncogene Proteins c-akt , Metabolism , Pulmonary Disease, Chronic Obstructive , Drug Therapy , Metabolism , Rats, Wistar , Smoking , Tumor Necrosis Factor-alpha , Metabolism
5.
Clinical and Experimental Otorhinolaryngology ; : 367-375, 2019.
Article in English | WPRIM | ID: wpr-763335

ABSTRACT

OBJECTIVES: To investigate glucocorticoid receptor (GR) and histone deacetylase 2 (HDAC2) gene expression and protein levels in peripheral blood mononuclear cells (PBMCs) of patients with severe or profound sudden sensorineural hearing loss (SSNHL) and to explore the roles of GRs and HDAC2 in glucocorticoid (GC) insensitivity. METHODS: Fifty-five severe or profound SSNHL patients were enrolled in the study. According to hearing improvement after GC treatment, patients were assigned into two groups: GC-sensitive and GC-resistant. A normal reference group included 20 healthy volunteers without hearing loss. Quantitative real-time polymerase chain reaction and Western blot analyses were used to detect the relative expression of GRα, GRβ, and HDAC2 in PBMCs at the mRNA and protein levels. RESULTS: The protein levels of GRs and HDAC2 in PBMCs of SSNHL patients were lower than the normal reference values before GC treatment. Compared with the GC-resistant group, both the mRNA and protein levels of GRα and HDAC2 were significantly increased in the GC-sensitive group after GC treatment. CONCLUSION: A lack of GRα and HDAC2 induction following steroid treatment in GC-resistant SSNHL patients may play a fundamental mechanistic role in GC insensitivity. Response of GRα and HDAC2 to steroid treatment may, thus, predict the prognosis of hearing improvement in SSNHL patients.


Subject(s)
Humans , Blotting, Western , Gene Expression , Healthy Volunteers , Hearing , Hearing Loss , Hearing Loss, Sensorineural , Histone Deacetylase 2 , Histone Deacetylases , Histones , Prognosis , Real-Time Polymerase Chain Reaction , Receptors, Glucocorticoid , Reference Values , RNA, Messenger
6.
Tuberculosis and Respiratory Diseases ; : 80-87, 2018.
Article in English | WPRIM | ID: wpr-742432

ABSTRACT

BACKGROUND: Asthma is a disease of chronic airway inflammation with heterogeneous features. Neutrophilic asthma is corticosteroid-insensitive asthma related to absence or suppression of TH2 process and increased TH1 and/or TH17 process. Macrolides are immunomodulatory drug that reduce airway inflammation, but their role in asthma is not fully known. The purpose of this study was to evaluate the role of macrolides in neutrophilic asthma and compare their effects with those of corticosteroids. METHODS: C57BL/6 female mice were sensitized with ovalbumin (OVA) and lipopolysaccharides (LPS). Clarithromycin (CAM) and/or dexamethasone (DXM) were administered at days 14, 15, 21, 22, and 23. At day 24, the mice were sacrificed. RESULTS: Airway resistance in the OVA+LPS exposed mice was elevated but was more attenuated after treatment with CAM+DXM compared with the monotherapy group (p < 0.05 and p < 0.01). In bronchoalveolar lavage fluid study, total cells and neutrophil counts in OVA+LPS mice were elevated but decreased after CAM+DXM treatment. In hematoxylin and eosin stain, the CAM+DXM-treated group showed less inflammation additively than the monotherapy group. There was less total protein, interleukin 17 (IL-17), interferon γ, and tumor necrosis factor α in the CAM+DXM group than in the monotherapy group (p < 0.001, p < 0.05, and p < 0.001). More histone deacetylase 2 (HDAC2) activity was recovered in the DXM and CAM+DXM challenged groups than in the control group (p < 0.05). CONCLUSION: Decreased IL-17 and recovered relative HDAC2 activity correlated with airway resistance and inflammation in a neutrophilic asthma mouse model. This result suggests macrolides as a potential corticosteroid-sparing agent in neutrophilic asthma.


Subject(s)
Animals , Female , Humans , Mice , Adrenal Cortex Hormones , Airway Resistance , Asthma , Bronchoalveolar Lavage Fluid , Clarithromycin , Dexamethasone , Eosine Yellowish-(YS) , Hematoxylin , Histone Deacetylase 2 , Histone Deacetylases , Inflammation , Interferons , Interleukin-17 , Lipopolysaccharides , Macrolides , Neutrophils , Ovalbumin , Th17 Cells , Tumor Necrosis Factor-alpha
7.
Braz. j. med. biol. res ; 50(6): e6103, 2017. graf
Article in English | LILACS | ID: biblio-839312

ABSTRACT

Colorectal cancer (CRC) is the fourth leading cause of cancer-induced mortality. Histone deacetylase 2 (HDAC2) is involved in prognosis and therapy of CRC. This study aimed to explore novel therapeutic targets for CRC. The alteration of HDAC2 expression in CRC tissues was estimated by qRT-PCR. After lentivirus transfection, HDAC2 knockdown was confirmed by western blot analysis. The effect of HDAC2 knockdown on cell proliferation was then assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Screened by TargetScan, microRNA (miR)-455 was predicted to bind to 3′UTR of HDAC2 and the prediction was verified by luciferase assay. Finally, cells were transfected, respectively, with miR-455 mimics or miR-455 negative control (miR-NC) and the expression of HDAC2, cell proliferation and apoptosis of transfected cells were respectively evaluated by western blot analysis, MTT assay and flow cytometry. Results showed that the HDAC2 expression was up-regulated in CRC tissues (P<0.05). HDAC2 knockdown significantly decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after infection. Then, miR-455 was verified to directly target HDAC2, resulting in a significant difference in luciferase activity (P<0.01). Moreover, miR-455 decreased the expression of HDAC2 (P<0.01). miR-455 remarkably decreased cell viability at day 3 (P<0.05), day 4 (P<0.01), and day 5 (P<0.001) after transfection while inducing cell apoptosis (P<0.001). In conclusion, miR-455 inhibited cell proliferation while inducing cell apoptosis by targeting HDAC2 in CRC cells.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Colorectal Neoplasms/enzymology , Histone Deacetylase 2/metabolism , MicroRNAs/metabolism , Apoptosis , Cell Proliferation/drug effects , Cell Survival , Colorectal Neoplasms/genetics , Down-Regulation , HCT116 Cells , Histone Deacetylase 2/genetics , MicroRNAs/genetics , Transfection , Up-Regulation
8.
Chinese Medical Journal ; (24): 1352-1360, 2017.
Article in English | WPRIM | ID: wpr-330618

ABSTRACT

<p><b>BACKGROUND</b>Placental multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene in human, plays a significant role in regulating drugs' transplacental transfer rates. Studies on placental MRP2 regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. Currently, the roles of epigenetic mechanisms in regulating placental drug transporters are still unclear. This study aimed to investigate the effect of histone deacetylases (HDACs) inhibition on MRP2 expression in the placental trophoblast cell line and to explore whether HDAC1/2/3 are preliminarily involved in this process.</p><p><b>METHODS</b>The human choriocarcinoma-derived trophoblast cell line (Bewo cells) was treated with the HDAC inhibitors-trichostatin A (TSA) at different concentration gradients of 0.5, 1.0, 3.0, and 5.0 μmol/L. Cells were harvested after 24 and 48 h treatment. Small interfering RNA (siRNA) specific for HDAC1/HDAC2/HDAC3 or control siRNA was transfected into cells. Total HDAC activity was detected by colorimetric assay kits. HDAC1/2/3/ABCC2 messenger RNA (mRNA) and protein expressions were determined by real-time quantitative polymerase chain reaction and Western-blot analysis, respectively. Immunofluorescence for MRP2 protein expression was visualized and assessed using an immunofluorescence microscopy and ImageJ software, respectively.</p><p><b>RESULTS</b>TSA could inhibit total HDAC activity and HDAC1/2/3 expression in company with increase of MRP2 expression in Bewo cells. Reduction of HDAC1 protein level was noted after 24 h of TSA incubation at 1.0, 3.0, and 5.0 μmol/L (vs. vehicle group, all P < 0.001), accompanied with dose-dependent induction of MRP2 expression (P = 0.045 for 1.0 μmol/L, P = 0.001 for 3.0 μmol/L, and P < 0.001 for 5.0 μmol/L), whereas no significant differences in MRP2 expression were noted after HDAC2/3 silencing. Fluorescent micrograph images of MRP2 protein were expressed on the cell membrane. The fluorescent intensities of MRP2 in the control, HDAC2, and HDAC3 siRNA-transfected cells were week, and no significant differences were noticed among these three groups (all P > 0.05). However, MRP2 expression was remarkably elevated in HDAC1 siRNA-transfected cells, which displayed an almost 3.19-fold changes in comparison with the control siRNA-transfected cells (P < 0.001).</p><p><b>CONCLUSIONS</b>HDACs inhibition could up-regulate placental MRP2 expression in vitro, and HDAC1 was probably to be involved in this process.</p>


Subject(s)
Humans , Cell Line , Histone Deacetylase 1 , Metabolism , Histone Deacetylase 2 , Metabolism , Histone Deacetylase Inhibitors , Pharmacology , Histone Deacetylases , Metabolism , Hydroxamic Acids , Pharmacology , Microscopy, Fluorescence , Multidrug Resistance-Associated Proteins , Genetics , Metabolism , RNA, Messenger , Trophoblasts , Cell Biology , Metabolism
9.
Chinese Journal of Contemporary Pediatrics ; (12): 475-483, 2017.
Article in Chinese | WPRIM | ID: wpr-351321

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of histone acetylation/deacetylation imbalances on embryonic hearts of mice and its effect on key genes of planar cell polarity (PCP) pathway-Vangl2, Scrib and Rac1 in H9C2 cells.</p><p><b>METHODS</b>Forty pregnant C57/B6 mice were randomly assigned into three groups: blank group (n=10), vehicle group (n=10), and valproic acid (VPA)-treated group (n=20). In the VPA-treated group, VPA, a histone deacetylase (HDAC) inhibitor, was administered to each individual dam intraperitoneally at a single dose of 700 mg/kg on embryonic day 10.5 (E10.5). The vehicle and blank groups received equivalent saline or no interventions, respectively. Dams were sacrificed on E15.5, and death rates of embryos were evaluated. Subsequently, embryonic hearts of survival fetus were removed to observe cardiac abnormalities by hematoxylin-eosin (HE) staining. H9C2 cells were cultured and allotted to the blank, vehicle, and VPA-treated groups: the VPA treated group received VPA exposure at concentrations of 2.0, 4.0 and 8.0 mmol/L; the vehicle and blank groups received equivalent saline or no interventions, respectively. HDAC1-3 as well as Vangl2, Scrib and Rac1 mRNA and protein expression levels were determined by quantitative real-time PCR and Western blot, respectively. The total HDAC activity was analyzed by colorimetric assay.</p><p><b>RESULTS</b>The fetus mortality rate after VPA treatment was 31.7%, with a significantly higher rate of cardiac abnormalities in comparison with the controls (P<0.05). In comparison with the blank and vehicle groups, HDAC1 mRNA was significantly increased at various concentrations of VPA treatment at all time points of exposure (P<0.05), together with a reduction of protein level after 48 and 72 hours of exposure (P<0.05). The inhibition of HDAC2 mRNA after various concentrations of VPA incubation was pronounced at 24 hours of exposure (P<0.05), while the protein levels were reduced at all time points (P<0.05). HDAC3 mRNA was prominently induced by VPA (4.0 and 8.0 mmol/L) at all time points of treatment (P<0.05). In contrast, the protein level was inhibited after VPA treatment (P<0.05). In comparison with the blank and vehicle groups, Vangl2 mRNA as well as Scrib mRNA/protein expression levels were markedly reduced after 48 and 72 hours of VPA treatment (P<0.05), together with a reduction of protein level in Vangl2 at 72 hours (P<0.05). Compared with the blank and vehicle groups, a significant repression in the total HDAC activity was observed in the VPA-treated group at concentrations of 4.0 and 8.0 mmol/L after 24 hours of treatment (P<0.05), and the effect persisted up to 48 and 72 hours, exhibiting pronounced inhibition at all concentrations (P<0.05).</p><p><b>CONCLUSIONS</b>VPA might result in acetylation/deacetylation imbalances by inhibiting HDAC1-3 protein expression and total HDAC activity, leading to the down-regulation of mRNA and protein expression of Vangl2 and Scrib. This could be one of the mechanisms contributing to congenital heart disease.</p>


Subject(s)
Animals , Mice , Acetylation , Cell Polarity , Cells, Cultured , Fetal Heart , Metabolism , Heart Defects, Congenital , Histone Deacetylase 1 , Genetics , Histone Deacetylase 2 , Genetics , Histones , Metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins , Genetics , RNA, Messenger , Valproic Acid , Pharmacology
10.
Cell Journal [Yakhteh]. 2015; 16 (4): 466-475
in English | IMEMR | ID: emr-154849

ABSTRACT

Many studies have focused on the epigenetic characteristics of donor cells to improve somatic cell nuclear transfer [SCNT]. We hypothesized that the epigenetic status and chromatin structure of undifferentiated bovine adipose tissue-derived stem cells [BADSCs] would not remain constant during different passages. The objective of this study was to determine the mRNA expression patterns of DNA methyltransferases [DNMT1, DNMT3a, DNMT3b] and histone deacetyltransferses [HDAC1, HDAC2, HDAC3] in BADSCs. In addition, we compared the measured levels of octamer binding protein-4 expression [OCT4] and acetylation of H3K9 [H3K9ac] in BADSCs cultures and different passages in vitro. In this experimental study, subcutaneous fat was obtained from adult cows immediately post-mortem. Relative level of DNMTs and HDACs was examined using quantitative real time polymerase chain reaction [q-PCR], and the level of OCT4 and H3K9ac was analyzed by flow cytometry at passages 3 [P3], 5 [P5] and 7 [P7]. The OCT4 protein level was similar at P3 and P5 but a significant decrease in its level was seen at P7. The highest and lowest levels of H3K9ac were observed at P5 and P7, respectively. At P5, the expression of HDACs and DNMTs was significantly decreased. In contrast, a remarkable increase in the expression of DNMTs was observed at P7. Our data demonstrated that the epigenetic status of BADSCs was variable during culture. The P5 cells showed the highest level of stemness and multipotency and the lowest level of chromatin compaction. Therefore, we suggest that P5 cells may be more efficient for SCNT compared with other passages


Subject(s)
Animals , DNA Methylation , Histones , RNA, Messenger , Adipose Tissue , Histone Deacetylase 1 , Histone Deacetylase 2 , Histone Deacetylases , Cattle
11.
Acta Physiologica Sinica ; (6): 447-454, 2015.
Article in English | WPRIM | ID: wpr-255926

ABSTRACT

To confirm whether class I histone deacetylase inhibitors (HDACIs) are effective in relief of peripheral inflammatory pain, the effects of two selective inhibitors, MS-275 and MGCD0103, were studied in rats inflamed by subcutaneous (s.c.) injection of bee venom (BV). The BV test is characterized by displaying both persistent spontaneous nociception (PSN) and primary hypersensitivity. Intrathecal (i.t.) pre-treatment of either MS-275 or MGCD0103 with a single dose of 60 nmol/20 μL resulted in profound suppression of both PSN and primary thermal hypersensitivity but without significant influence upon the primary mechanical hypersensitivity and mirror-image thermal hypersensitivity. Moreover, the up-regulation of both HDAC1 and HDAC2 induced by s.c. BV injection was completely suppressed by i.t. pre-treatment of MS-275. The present results provide with another new line of evidence showing involvement of epigenetic regulation of chromatin structure by HDAC1/2-mediated histone hypoacetylation in the BV-induced PSN and thermal hypersensitivity and demonstrate the beneficial effects of class I HDACIs in prevention of peripheral inflammatory pain from occurring.


Subject(s)
Animals , Rats , Bee Venoms , Benzamides , Pharmacology , Epigenesis, Genetic , Histone Deacetylase 1 , Genetics , Metabolism , Histone Deacetylase 2 , Genetics , Metabolism , Histone Deacetylase Inhibitors , Pharmacology , Hot Temperature , Hyperalgesia , Drug Therapy , Inflammation , Drug Therapy , Injections, Subcutaneous , Nociception , Pain , Drug Therapy , Pain Measurement , Pyridines , Pharmacology , Pyrimidines , Pharmacology , Rats, Sprague-Dawley , Up-Regulation
12.
National Journal of Andrology ; (12): 699-703, 2013.
Article in Chinese | WPRIM | ID: wpr-350834

ABSTRACT

<p><b>OBJECTIVE</b>To detect the expressions of HDAC1 and HDAC2 proteins in prostate cancer and to explore their clinical significance.</p><p><b>METHODS</b>We detected the expressions of HDAC1 and HDAC2 proteins in the tissue samples of prostate cancer from 82 patients with complete clinical data by immunohistochemistry, and analyzed the correlation of the expressions of HDAC1 and HDAC2 with other clinicopathological parameters, such as Gleason scores, preoperative PSA levels, and postoperative survival time.</p><p><b>RESULTS</b>HDAC1 and HDAC2 were expressed in 59.7 and 70.7% of the patients, respectively, located in the nuclei of cancer cells, more highly in those with higher than in those with lower Gleason scores (P < 0.05). No statistically significant differences were found in the expressions of HDAC1 and HDAC2 among those with different preoperative PSA levels and those of different ages (P > 0.05). Univariate analysis demonstrated that the HDAC2 expression, pre-operative PSA levels, Gleason scores and clinical stages of prostate cancer were important factors affecting the patients'survival (P < 0.05). Cox analysis indicated that the expression of HDAC2 was an independent index for the prognosis of prostate cancer (P = 0.017, HR = 2.265, 95% CI: 1.145 - 4.775).</p><p><b>CONCLUSION</b>The increased expression of HDAC2 in prostate cancer can serve as an independent prognostic indicator, which has provided a theoretical base for the clinical application of HDACs in the diagnosis and prognosis of prostate cancer.</p>


Subject(s)
Aged , Aged, 80 and over , Humans , Male , Middle Aged , Histone Deacetylase 1 , Metabolism , Histone Deacetylase 2 , Metabolism , Immunohistochemistry , Prognosis , Prostatic Neoplasms , Metabolism , Pathology
13.
The Korean Journal of Internal Medicine ; : 708-714, 2013.
Article in English | WPRIM | ID: wpr-157976

ABSTRACT

BACKGROUND/AIMS: Recent investigations suggest that histone deacetylase 1 (HDAC1) and HDAC2 may be target molecules to predict therapeutic responses to corticosteroids. We evaluated the effects of variation in HDAC1 and HDAC2 on the response to corticosteroids in asthmatics. METHODS: Two single nucleotide polymorphisms (SNPs) were selected after resequencing HDAC1 and HDAC2. For the first analysis, we evaluated the association between those SNPs and asthma severity in 477 asthmatics. For the second analysis, we evaluated the effects of these SNPs on lung function improvements in response to corticosteroid treatment in 35 independent adult asthmatics and 70 childhood asthmatics. RESULTS: We found that one SNP in HDAC1 (rs1741981) was significantly related to asthma severity in a recessive model (corrected p = 0.036). Adult asthmatics who were homozygous for the minor allele of rs1741981 showed significantly lower % forced expiratory volume in 1 second (%FEV1) increases in response to systemic corticosteroids treatment compared with the heterozygotes or those homozygous for the major allele (12.7% +/- 7.2% vs. 37.4% +/- 33.7%, p = 0.018). Similarly, childhood asthmatics who were homozygous for the minor allele of rs1741981 showed significantly lower %FEV1 increases in response to inhaled corticosteroid treatment compared with the heterozygotes or those homozygous for the major allele (14.1% +/- 5.9% vs. 19.4% +/- 8.9%, p = 0.035). CONCLUSIONS: The present study demonstrated that rs1741981 in HDAC1 was significantly associated with the response to corticosteroid treatment in asthmatics.


Subject(s)
Adult , Aged , Child , Female , Humans , Male , Middle Aged , Administration, Inhalation , Adrenal Cortex Hormones/administration & dosage , Anti-Asthmatic Agents/administration & dosage , Asthma/diagnosis , Forced Expiratory Volume , Gene Frequency , Heterozygote , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Homozygote , Lung/drug effects , Pharmacogenetics , Phenotype , Polymorphism, Single Nucleotide , Recovery of Function , Severity of Illness Index , Treatment Outcome
14.
Chinese Journal of Pathology ; (12): 396-399, 2012.
Article in Chinese | WPRIM | ID: wpr-303564

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of histone deacetylase 2 (HDAC2) expression on cell proliferation, apoptosis and migration of laryngeal squamous cell carcinoma (LSCC) Hep-2 cells.</p><p><b>METHODS</b>HDAC2 siRNA and control siRNA were transfected into LSCC Hep-2 cells by lipofectamine 2000, and cells were divided into three experimental groups: untreated group, control siRNA group and HDAC2 siRNA transfection group. Western blotting was utilized to detect the expression of HDAC2 protein in Hep-2 cells. Cell proliferation and apoptosis were investigated by CCK-8 kit and flow cytometry, respectively. Boyden chamber was used to study cell migration. Expressions of cell apoptosis and cell migration related proteins were detected by Western blotting.</p><p><b>RESULTS</b>HDAC2 siRNA significantly down-regulated the expression of HDAC2 protein in LSCC Hep-2 cells. Down-regulation of HDAC2 expression coincided with an inhibition of cell proliferation and migration along with an induced cell apoptosis of Hep-2 cells. Moreover, down-regulation of HDAC2 expression significantly increased the expressions of caspase-3 and caspase-9 proteins but decreased the expressions of matrix metalloproteinases (MMP)-2 and MMP-9 proteins.</p><p><b>CONCLUSIONS</b>HDAC2 may play a pivotal role in the initiation and development of LSCC. Down-regulation of HDAC2 expression mediates cell apoptosis. Cell migration inhibition may be tightly associated with overexpression of caspase-3 and caspase-9 along with down-regulation of MMP-2 and MMP-9 expressions.</p>


Subject(s)
Humans , Apoptosis , Carcinoma, Squamous Cell , Metabolism , Pathology , Caspase 3 , Metabolism , Caspase 9 , Metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Histone Deacetylase 2 , Genetics , Metabolism , Laryngeal Neoplasms , Metabolism , Pathology , Matrix Metalloproteinase 2 , Metabolism , Matrix Metalloproteinase 9 , Metabolism , RNA Interference , RNA, Small Interfering , Genetics , Transfection
15.
Chinese Journal of Pathology ; (12): 466-469, 2012.
Article in Chinese | WPRIM | ID: wpr-303546

ABSTRACT

<p><b>OBJECTIVE</b>To study the effect of down-regulation of histone deacetylase 2 (HDAC2) expression on cell proliferation and cell cycle in cervical carcinoma cell lines HeLa.</p><p><b>METHODS</b>HDAC2 siRNA and control siRNA were transfected to HeLa cells. CCK-8 and flow cytometry were used to analyze the changes of cell proliferation and cell cycle, respectively. Western blot was employed to detect the changes of cell proliferation and cell cycle-related proteins.</p><p><b>RESULTS</b>HDAC2 siRNA significantly down-regulated the expression of HDAC2 protein in HeLa cells, resulting in marked inhibition of cell proliferation. In addition, the percentage of cells in G(0)/G(1) phase in HDAC2 siRNA group (63.3% ± 2.0%) was significantly higher than that in untreated group (29.3% ± 1.7%) or control siRNA group (29.4% ± 1.7%), F = 354.181, P = 0.000. Furthermore, Western blot demonstrated that down-regulation of HDAC2 expression decreased the expression of cyclin D1, cyclin E and CDK2 proteins but increased the expression of p21 protein.</p><p><b>CONCLUSIONS</b>Down-regulation of HDAC2 expression mediates proliferation inhibition and cell cycle arrest. It is associated with decrease in cyclin D1, cyclin E and CDK2 protein expression and increase in p21 protein expression.</p>


Subject(s)
Humans , Cell Cycle , Cell Proliferation , Cyclin D1 , Metabolism , Cyclin E , Metabolism , Cyclin-Dependent Kinase 2 , Metabolism , Down-Regulation , HeLa Cells , Histone Deacetylase 2 , Genetics , Metabolism , Oncogene Proteins , Metabolism , Proto-Oncogene Proteins p21(ras) , Metabolism , RNA, Small Interfering , Genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL